ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 496]      



Задача 108923

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

В треугольнике проведены биссектрисы AL и BM . Известно, что одна из точек пересечения описанных окружностей треугольников ACL и BCM лежит на отрезке AB . Докажите, что ACB=60o .
Прислать комментарий     Решение


Задача 108932

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 4
Классы: 8,9

Диагонали вписанного четырёхугольника ABCD пересекаются в точке O . Точка O' , симметричная точке O относительно прямой AD , лежит на описанной окружности четырёхугольника. Докажите, что O'O – биссектриса угла BO'C .
Прислать комментарий     Решение


Задача 109815

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Против большей стороны лежит больший угол ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9

Пусть O – центр описанной окружности остроугольного треугольника ABC, T – центр описанной окружности треугольника AOC, M – середина AC. На сторонах AB и BC выбраны точки D и E соответственно так, что  ∠BDM = ∠BEM = ∠B.  Докажите, что  BTDE.

Прислать комментарий     Решение

Задача 109853

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Гомотетичные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вспомогательные подобные треугольники ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 9,10,11

Автор: Скробот Д.

Дан треугольник ABC. Окружность ω касается описанной окружности Ω треугольника ABC в точке A, пересекает сторону AB в точке K, а также пересекает сторону BC. Касательная CL к окружности ω такова, что отрезок KL пересекает сторону BC в точке T. Докажите, что отрезок BT равен по длине касательной, проведённой из точки B к ω.

Прислать комментарий     Решение

Задача 109855

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вспомогательные равные треугольники ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Неравенства с углами ]
Сложность: 4
Классы: 8,9

На сторонах AB, BC, CA треугольника ABC выбраны точки P, Q, R соответственно таким образом, что  AP = CQ  и четырёхугольник RPBQ– вписанный. Касательные к описанной окружности треугольника ABC в точках A и C пересекают прямые RP и RQ в точках X и Y соответственно. Докажите, что  RX = RY.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 496]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .