Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 1026]
Бильярд имеет форму прямоугольного треугольника, один из острых углов
которого равен 30°. Из этого угла по медиане противоположной стороны
выпущен шар (материальная точка). Доказать, что после восьми отражений (угол падения равен углу отражения) он попадёт в лузу, находящуюся в вершине угла 60°.
Из точек
A и
B , лежащих на разных сторонах угла,
восставлены перпендикуляры к сторонам, пересекающие
биссектрису угла в точках
C и
D . Докажите, что
середина отрезка
CD равноудалена от точек
A и
B .
В четырёхугольнике
ABCD точки
K ,
L ,
M ,
N –
середины сторон соответственно
AB ,
BC ,
CD ,
DA .
Прямые
AL и
CK пересекаются в точке
P , прямые
AM и
CN – пересекаются в точке
Q . Оказалось, что
APCQ – параллелограмм. Докажите, что
ABCD – тоже
параллелограмм.
Пусть
A и
B – две окружности, лежащие по одну сторону
от прямой
m . Постройте касательную к окружности
A ,
которая после отражения от прямой
m также коснётся окружности
B .
С помощью циркуля и линейки постройте хорду данной окружности,
равную и параллельную данному отрезку.
Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 1026]