ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть ABCD – выпуклый четырёхугольник, M и N – середины его сторон AD и BC соответственно. Точки A , B , M и N лежат на одной окружности, прямая AB касается описанной окружности треугольника BMC . Докажите, что она также касается описанной окружности треугольника AND .

   Решение

Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 496]      



Задача 108670

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9

Диагонали параллелограмма ABCD пересекаются в точке O . Окружность, описанная вокруг треугольника ABO , пересекает сторону AD в точке E . Окружность, описанная вокруг треугольника DOE , пересекает отрезок BE в точке F . Докажите, что BCA = FCD .
Прислать комментарий     Решение


Задача 108929

Темы:   [ Вспомогательная окружность ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9

На сторонах BC , AC и AB равнобедренного треугольника ABC ( AB=BC ) выбраны соответственно точки A1 , B1 и C1 . Известно, что BC1A1 = CA1B1= BAC ; P – точка пересечения отрезков BB1 и CC1 . Докажите, что четырёхугольник AB1PC1 – вписанный.
Прислать комментарий     Решение


Задача 108952

Темы:   [ Угол между касательной и хордой ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9

Пусть ABCD – выпуклый четырёхугольник, M и N – середины его сторон AD и BC соответственно. Точки A , B , M и N лежат на одной окружности, прямая AB касается описанной окружности треугольника BMC . Докажите, что она также касается описанной окружности треугольника AND .
Прислать комментарий     Решение


Задача 110857

Темы:   [ Три окружности пересекаются в одной точке ]
[ Вписанные четырехугольники ]
Сложность: 4
Классы: 8,9

Около остроугольного треугольника ABC описана окружность. На её меньших дугах BC , AC и AB взяты точки A1 , B1 и C1 соответственно. Точки A2 , B2 и C2 – ортоцентры треугольников соответственно BA1C , AB1C и AC1B . Докажите, что описанные окружности треугольников BA2C , AB2C и AC2B пересекаются в одной точке.
Прислать комментарий     Решение


Задача 110864

Темы:   [ Вспомогательная окружность ]
[ Вписанные четырехугольники ]
Сложность: 4
Классы: 8,9

Биссектрисы внешних углов при вершинах B и C трапеции ABCD ( BC || AD ) пересекаются в точке P , а биссектрисы внешних углов при вершинах A и D – в точке Q . Прямые PB и PC пересекают прямую AD в точке E и F соответственно. Прямые AP и EQ пересекаются в точке M , а прямые PD и FQ – в точке N . Докажите, что MN || AD .
Прислать комментарий     Решение


Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 496]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .