ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 496]      



Задача 66648

Темы:   [ Общая касательная к двум окружностям ]
[ Вписанные четырехугольники ]
[ Теорема Паскаля ]
Сложность: 4+
Классы: 8,9,10,11

Пусть $E$ – одна из двух точек пересечения окружностей $\omega_1$ и $\omega_2$. Пусть $AB$ – общая внешняя касательная этих окружностей, прямая $CD$ параллельна $AB$, причем точки $A$ и $C$ лежат на $\omega_1$, а точки $B$ и $D$ – на $\omega_2$. Окружности $ABE$ и $CDE$ повторно пересекаются в точке $F$. Докажите, что $F$ делит одну из дуг $CD$ окружности $CDE$ пополам.
Прислать комментарий     Решение


Задача 66709

Темы:   [ Теоремы Чевы и Менелая ]
[ Вписанные четырехугольники (прочее) ]
[ Касающиеся окружности ]
[ Гомотетия помогает решить задачу ]
Сложность: 4+
Классы: 8,9,10,11

Четырёхугольник $ABCD$ вписан в окружность. Лучи $BA$ и $CD$ пересекаются в точке $P$. Прямая, проходящая через $P$ и параллельная касательной к окружности в точке $D$, пересекает в точках $U$ и $V$ касательные, проведённые к окружности в точках $A$ и $B$. Докажите, что окружности, описанные около треугольника $CUV$ и четырёхугольника $ABCD$, касаются.

Прислать комментарий     Решение

Задача 116602

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Вписанные четырехугольники (прочее) ]
[ Теорема синусов ]
[ Отношение, в котором биссектриса делит сторону ]
[ Окружность Аполлония ]
Сложность: 4+
Классы: 8,9,10

Выпуклый четырёхугольник ABCD таков, что  AB·CD = AD·BC.  Докажите, что –∠BAC + ∠CBD + ∠DCA + ∠ADB = 180°.

Прислать комментарий     Решение

Задача 78296

Темы:   [ Признаки и свойства касательной ]
[ Вписанные четырехугольники (прочее) ]
[ Признаки и свойства параллелограмма ]
Сложность: 4+
Классы: 9,10

Две окружности O1 и O2 пересекаются в точках M и P. Обозначим через MA хорду окружности O1, касающуюся окружности O2 в точке M, а через MB — хорду окружности O2, касающуюся окружности O1 в точке M. На прямой MP отложен отрезок PH = MP. Доказать, что четырёхугольник MAHB можно вписать в окружность.
Прислать комментарий     Решение


Задача 111764

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Вписанные четырехугольники (прочее) ]
[ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 5-
Классы: 9,10,11

В треугольнике ABC на стороне BC выбрана точка M так, что точка пересечения медиан треугольника ABM лежит на описанной окружности треугольника ACM , а точка пересечения медиан треугольника ACM лежит на описанной окружности треугольника ABM . Докажите, что медианы треугольников ABM и ACM из вершины M равны.
Прислать комментарий     Решение


Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 496]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .