ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите все возрастающие конечные арифметические прогрессии, которые состоят из простых чисел и у которых количество членов больше чем разность прогрессии.

   Решение

Задачи

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 367]      



Задача 78039

Темы:   [ Числовые таблицы и их свойства ]
[ Осевая и скользящая симметрии (прочее) ]
[ Четность и нечетность ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 11

Квадратная таблица в n² клеток заполнена числами от 1 до n так, что в каждой строке и каждом столбце встречаются все эти числа. Если n нечётно и таблица симметрична относительно диагонали, идущей из левого верхнего угла в правый нижний, то на этой диагонали встретятся все эти числа 1, 2, 3,..., n. Доказать.

Прислать комментарий     Решение

Задача 97975

Темы:   [ Наглядная геометрия в пространстве ]
[ Куб ]
[ Четность и нечетность ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Анджанс А.

Куб 20×20×20 составлен из 2000 кирпичей размером 2×2×1.
Докажите, что его можно проткнуть иглой так, чтобы игла прошла через две противоположные грани и не уткнулась в кирпич.

Прислать комментарий     Решение

Задача 98211

Темы:   [ Принцип крайнего (прочее) ]
[ Степень вершины ]
[ Связность и разложение на связные компоненты ]
[ Принцип Дирихле (прочее) ]
[ Деревья ]
Сложность: 3+
Классы: 7,8,9

Автор: Вялый М.Н.

Каждый из 450 депутатов парламента дал пощёчину ровно одному своему коллеге.
Докажите, что можно избрать парламентскую комиссию из 150 человек, среди членов которой никто никого не бил.

Прислать комментарий     Решение

Задача 98385

Темы:   [ Десятичная система счисления ]
[ Куб ]
[ Делимость чисел. Общие свойства ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10

Шесть игральных костей нанизали на спицу так, что каждая может вращаться независимо от остальных (протыкаем через центры противоположных граней). Спицу положили на стол и прочитали число, образованное цифрами на верхних гранях костей. Докажите, что можно так повернуть кости, чтобы это число делилось на 7. (На гранях стоят цифры от 1 до 6, сумма цифр на противоположных гранях равна 7.)

Прислать комментарий     Решение

Задача 109496

Темы:   [ Простые числа и их свойства ]
[ Арифметическая прогрессия ]
[ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

Найдите все возрастающие конечные арифметические прогрессии, которые состоят из простых чисел и у которых количество членов больше чем разность прогрессии.

Прислать комментарий     Решение

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 367]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .