ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Миша мысленно расположил внутри данного круга единичного радиуса выпуклый многоугольник, содержащий центр круга, а Коля пытается угадать его периметр. За один шаг Коля указывает Мише какую-либо прямую и узнает от него, пересекает ли она многоугольник. Имеет ли Коля возможность наверняка угадать периметр многоугольника: а) через 3 шага с точностью до 0,3; б) через 2007 шагов с точностью до 0,003?

   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 111345

Темы:   [ Интеграл и площадь ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3+
Классы: 11

Числа p и q таковы, что параболы  y = – 2x²  и  y = x² + px + q  пересекаются в двух точках, ограничивая некоторую фигуру.
Найдите уравнение вертикальной прямой, делящей площадь этой фигуры пополам.

Прислать комментарий     Решение

Задача 105091

Темы:   [ Вычисление интегралов ]
[ Периодичность и непериодичность ]
[ Интеграл и площадь ]
[ Аффинные преобразования и их свойства ]
Сложность: 3+
Классы: 10,11

Вычислите $$\int \limits_0^{\pi} \big(|\sin(1999x)|-|\sin(2000x)|\big) \, dx.$$

Прислать комментарий     Решение

Задача 116889

Темы:   [ Исследование квадратного трехчлена ]
[ Теорема о промежуточном значении. Связность ]
[ Приложения интеграла (прочее) ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

Коэффициенты квадратного уравнения  ax² + bx + c = 0  удовлетворяют условию  2a + 3b + 6c = 0.
Докажите, что это уравнение имеет корень на интервале  (0, 1).

Прислать комментарий     Решение

Задача 109507

Темы:   [ Выпуклые многоугольники ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Многоугольники (неравенства) ]
[ Метод координат на плоскости ]
[ Интеграл и длина ]
Сложность: 7
Классы: 10,11

Миша мысленно расположил внутри данного круга единичного радиуса выпуклый многоугольник, содержащий центр круга, а Коля пытается угадать его периметр. За один шаг Коля указывает Мише какую-либо прямую и узнает от него, пересекает ли она многоугольник. Имеет ли Коля возможность наверняка угадать периметр многоугольника: а) через 3 шага с точностью до 0,3; б) через 2007 шагов с точностью до 0,003?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .