ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дана последовательность натуральных чисел a1, a2, ..., an, в которой a1 не делится на 5 и для всякого n an+1 = an + bn, где bn – последняя цифра числа an. Докажите, что последовательность содержит бесконечно много степеней двойки. ![]() |
Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 598]
Лёша задумал двузначное число (от 10 до 99). Гриша пытается его отгадать, называя двузначные числа. Считается, что он отгадал, если одну цифру он назвал правильно, а в другой ошибся не более чем на единицу (например, если задумано число 65, то 65, 64 и 75 подходят, а 63, 76 и 56 – нет). Придумайте способ, гарантирующий Грише успех за 22 попытки (какое бы число ни задумал Лёша).
Покажите, что в условиях задачи 105100 нет способа, гарантирующего Грише успех за 18 попыток.
Дана последовательность натуральных чисел a1, a2, ..., an, в которой a1 не делится на 5 и для всякого n an+1 = an + bn, где bn – последняя цифра числа an. Докажите, что последовательность содержит бесконечно много степеней двойки.
В королевстве 16 городов. Король хочет построить такую систему дорог, чтобы
из каждого города можно было попасть в каждый, минуя не более одного
промежуточного города, и чтобы из каждого города выходило не более пяти дорог.
Саша написал по кругу в произвольном порядке не более ста различных натуральных чисел, а Дима пытается угадать их количество. Для этого Дима сообщает Саше в некотором порядке несколько номеров, а затем Саша сообщает Диме в том же порядке, какие числа стоят под указанными Димой номерами, если считать числа по часовой стрелке, начиная с одного и того же числа. Сможет ли Дима заведомо угадать количество написанных Сашей чисел, сообщив
Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 598] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |