Страница:
<< 34 35 36 37
38 39 40 >> [Всего задач: 222]
|
|
Сложность: 5- Классы: 8,9,10
|
На бесконечной во все стороны шахматной доске выделено некоторое множество
клеток A. На всех клетках доски, кроме множества A, стоят короли. Все короли могут по команде одновременно сделать ход, заключающийся в том, что король либо остаётся на месте, либо занимает соседнее поле, то есть делает "ход короля". При этом он может занять и то поле, с которого сходит другой король, но в результате хода двум королям оказаться в одной клетке запрещается. Существует ли такое k и такой способ движения королей, что после k ходов вся доска будет заполнена королями? Рассмотрите варианты:
а) A есть множество всех клеток, у которых обе координаты кратны 100 (предполагается, что одна горизонтальная и одна вертикальная линии занумерованы всеми целыми числами от минус бесконечности до бесконечности и каждая клетка доски обозначается двумя числами – координатами по этим двум осям);
б) A есть множество всех клеток, каждая из которых бьётся хотя бы одним из 100 ферзей, расположенных каким-то фиксированным образом.
|
|
Сложность: 5- Классы: 9,10,11
|
На отрезке [0, 1] отмечено несколько различных точек. При этом каждая отмеченная точка расположена либо ровно посередине между двумя другими
отмеченными точками (не обязательно соседними с ней), либо ровно посередине между отмеченной точкой и концом отрезка. Докажите, что все отмеченные точки рациональны.
|
|
Сложность: 5- Классы: 8,9,10,11
|
В однокруговом футбольном турнире играли  n > 4 команд. За победу давалось 3 очка, за ничью 1, за проигрыш 0. Оказалось, что все команды набрали поровну очков.
а) Докажите, что найдутся четыре команды, имеющие поровну побед, поровну ничьих и поровну поражений.
б) При каком наименьшем n могут не найтись пять таких команд?
|
|
Сложность: 5- Классы: 8,9,10
|
В клетках таблицы 10×10 расставлены числа 1, 2, 3, ..., 100 так, что сумма любых двух соседних чисел не превосходит S.
Найдите наименьшее возможное значение S. (Числа называются соседними, если они стоят в клетках, имеющих общую сторону.)
|
|
Сложность: 5- Классы: 9,10,11
|
В стране 2001 город, некоторые пары городов соединены дорогами, причём из
каждого города выходит хотя бы одна дорога и нет города, соединённого дорогами со всеми остальными. Назовём множество городов D доминирующим, если каждый не входящий в D город соединён дорогой с одним из городов множества D. Известно, что в каждом доминирующем множестве хотя бы k городов. Докажите, что страну можно разбить на 2001 – k республик так, что никакие два города из одной республики не будут соединены дорогой.
Страница:
<< 34 35 36 37
38 39 40 >> [Всего задач: 222]