ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Последовательность неотрицательных рациональных чисел a1, a2, a3, ... удовлетворяет соотношению  am + an = amn  при любых натуральных m, n.
Докажите, что не все её члены различны.

   Решение

Задачи

Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 366]      



Задача 66625

Темы:   [ Делимость чисел. Общие свойства ]
[ Целочисленные решетки ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9,10,11

В доме $8N$ этажей. В подъезде два лифта, в каждом из которых кнопки расположены в виде прямоугольника $N\times 8$ ($N$ строк, 8 столбцов), но пронумерованы по-разному: в одном «слева направо, снизу вверх», а в другом «снизу вверх, слева направо» (пример для $N=3$ см. на рисунке). Даня нажимает кнопку своего этажа, не глядя на нумерацию, потому что эта кнопка в обоих лифтах расположена на одном и том же месте. На каком этаже он может жить? (Например, для $N=3$ ответ 1 и 24. Требуется найти все возможные варианты в зависимости от $N$.)

17 18 19 20 21 22 23 24
9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8
3 6 9 12 15 18 21 24
2 5 8 11 14 17 20 23
1 4 7 10 13 16 19 22

Прислать комментарий     Решение

Задача 60833

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
Сложность: 4-
Классы: 9,10,11

Предположим, что числа m1, ..., mn попарно взаимно просты. Докажите, что любую правильную дробь вида     можно представить в виде алгебраической суммы правильных дробей вида ni/mi  (i = 1, ..., n).

Прислать комментарий     Решение

Задача 65743

Темы:   [ Количество и сумма делителей числа ]
[ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
Сложность: 4-
Классы: 8,9,10

Саша выбрал натуральное число  N > 1  и выписал в строчку в порядке возрастания все его натуральные делители:  d1 < ... < ds  (так что  d1 = 1  и
ds = N).  Затем для каждой пары стоящих рядом чисел он вычислил их наибольший общий делитель; сумма полученных  s – 1  чисел оказалась равной
N – 2.  Какие значения могло принимать N?

Прислать комментарий     Решение

Задача 109708

Темы:   [ Деление с остатком ]
[ Примеры и контрпримеры. Конструкции ]
[ Уравнения в целых числах ]
Сложность: 4-
Классы: 7,8,9

Докажите, что можно разбить все множество натуральных чисел на 100 непустых подмножеств так, чтобы в любой тройке a, b, c, для которой  a + 99b = c,  нашлись два числа из одного подмножества.

Прислать комментарий     Решение

Задача 109804

Темы:   [ Последовательности (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Уравнения в целых числах ]
Сложность: 4-
Классы: 9,10,11

Последовательность неотрицательных рациональных чисел a1, a2, a3, ... удовлетворяет соотношению  am + an = amn  при любых натуральных m, n.
Докажите, что не все её члены различны.

Прислать комментарий     Решение

Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 366]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .