ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На стороне AD параллелограмма ABCD взята точка P так, что  AP : AD = 1 : n,  Q – точка пересечения прямых AC и BP.
Докажите, что  AQ : AC = 1 : (n + 1).

Вниз   Решение


Леша поставил в клетки таблицы 22×22 натуральные числа от 1 до 22².
Верно ли, что Олег может выбрать такие две клетки, соседние по стороне или вершине, что сумма чисел, стоящих в этих клетках, делится на 4?

Вверх   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 215]      



Задача 107806

Темы:   [ Числовые таблицы и их свойства ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Целые числа от 1 до n записаны в строчку. Под ними записаны те же числа в другом порядке. Может ли случиться так, что сумма каждого числа и записанного под ним есть точный квадрат  а) при  n = 9,   б) при  n = 11,   в) при  n = 1996.

Прислать комментарий     Решение

Задача 109028

Темы:   [ Числовые таблицы и их свойства ]
[ Геометрическая прогрессия ]
Сложность: 4-
Классы: 9,10

В приведённой таблице заполнить все клетки так, чтобы числа в каждом столбце и каждой строке составили геометрическую прогрессию.

Прислать комментарий     Решение

Задача 109766

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 7,8,9

Можно ли в клетках таблицы 2002×2002 расставить натуральные числа от 1 до 2002² так, чтобы для каждой клетки этой таблицы из строки или из столбца, содержащих эту клетку, можно было бы выбрать тройку чисел, одно из которых равно произведению двух других?

Прислать комментарий     Решение

Задача 109831

Темы:   [ Числовые таблицы и их свойства ]
[ Арифметика остатков (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Леша поставил в клетки таблицы 22×22 натуральные числа от 1 до 22².
Верно ли, что Олег может выбрать такие две клетки, соседние по стороне или вершине, что сумма чисел, стоящих в этих клетках, делится на 4?

Прислать комментарий     Решение

Задача 109889

Темы:   [ Числовые таблицы и их свойства ]
[ Инварианты ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 8,9,10

В каждой клетке квадратной таблицы размером n×n клеток  (n ≥ 3)  записано число 1 или –1. Если взять любые две строки, перемножить числа, стоящие в них друг над другом и сложить n получившихся произведений, то сумма будет равна 0. Докажите, что число n делится на 4.

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 215]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .