ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Можно ли произвольный ромб разрезать не более, чем на две части так, чтобы из этих частей сложить прямоугольник?

Вниз   Решение


На стороне AB квадрата ABCD взята точка E, а на стороне CD – точка F, причём  AE : EB = 1 : 2,  а  CF = FD.
Будут ли голубой и зелёный треугольники (см. рис.) подобны?

ВверхВниз   Решение


В треугольнике ABC проведены биссектрисы AE и CD . Найдите длины отрезков BD , AE , радиус окружности, описанной около треугольника CDE , и расстояние между центрами окружностей, вписанной в треугольник ABC и описанной около треугольника ABC , если AC=2 , BC=4 , CD = .

ВверхВниз   Решение


Дана треугольная пирамида ABCD . Сфера S1 , проходящая через точки A , B , C , пересекает ребра AD , BD , CD в точках K , L , M соответственно; сфера S2 , проходящая через точки A , B , D , пересекает ребра AC , BC , DC в точках P , Q , M соответственно. Оказалось, что KL|| PQ . Докажите, что биссектрисы плоских углов KMQ и LMP совпадают.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 65]      



Задача 87629

Темы:   [ Свойства сечений ]
[ Параллельность прямых и плоскостей ]
Сложность: 4
Классы: 10,11

Точки K и M лежат на рёбрах соответственно CD и AB пирамиды ABCD . Постройте сечение пирамиды плоскостью, проходящей через точки K и M параллельно прямой AD .
Прислать комментарий     Решение


Задача 87630

Темы:   [ Свойства сечений ]
[ Параллельность прямых и плоскостей ]
Сложность: 4
Классы: 10,11

Постройте сечение треугольной пирамиды плоскостью, проходящей через три точки, лежащие в трёх гранях пирамиды.
Прислать комментарий     Решение


Задача 111587

Темы:   [ Правильная пирамида ]
[ Параллельность прямых и плоскостей ]
Сложность: 4
Классы: 10,11

Сторона основания MNP правильной пирамиды MNPQ равна 5. Основанием правильной пирамиды SABCD является квадрат ABCD . Все вершины пирамиды SABCD расположены на рёбрах пирамиды MNPQ , причём вершина S лежит на ребре QM и MS=MQ . Найдите объём пирамиды SABCD .
Прислать комментарий     Решение


Задача 110152

Темы:   [ Тетраэдр (прочее) ]
[ Параллельность прямых и плоскостей ]
[ Симметрия относительно плоскости ]
[ Движение помогает решить задачу ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 5+
Классы: 10,11

Дана треугольная пирамида ABCD . Сфера S1 , проходящая через точки A , B , C , пересекает ребра AD , BD , CD в точках K , L , M соответственно; сфера S2 , проходящая через точки A , B , D , пересекает ребра AC , BC , DC в точках P , Q , M соответственно. Оказалось, что KL|| PQ . Докажите, что биссектрисы плоских углов KMQ и LMP совпадают.
Прислать комментарий     Решение


Задача 109079

Темы:   [ Параллелепипеды (прочее) ]
[ Свойства сечений ]
[ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 10,11

Докажите, что если сечение параллелепипеда плоскостью является многоугольником с числом сторон, большим трёх, то у этого многоугольника есть параллельные стороны.
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 65]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .