ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Сторона основания ABCD правильной пирамиды SABCD равна 2. Плоскость α , параллельная прямым SC и AD , пересекает пирамиду так, что в сечение можно вписать окружность, причём периметр сечения равен ![]() ![]() Диагонали выпуклого четырёхугольника ABCD пересекаются в точке P . Известны площади треугольников ABP , BCP , CDP . Найдите площадь треугольника ADP . ![]() ![]() ![]() Сторона основания ABCD правильной пирамиды SABCD равна 2. Плоскость α , параллельная прямым SB и AD , пересекает пирамиду так, что в сечение можно вписать окружность, причём периметр сечения равен ![]() ![]() ![]() Площадь трапеции равна 84, а основания относятся как 3:4. Найдите площади треугольников, на которые разбивает трапецию её диагональ. ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 226]
В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BM и CN пересекаются в точке O. Найдите площадь треугольника BOC.
В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BN и CK пересекаются в точке O. Найдите площадь треугольника BOK.
На стороне BC треугольника ABC отмечены такие точки M и N, что CM = MN = NB. К стороне BC в точке N восставлен перпендикуляр, пересекающий сторону AB в точке K. Оказалось, что площадь треугольника AMK в 4,5 раза меньше площади исходного треугольника. Докажите, что треугольник ABC – равнобедренный.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 226] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |