ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Если a ≡ b (mod m) и c ≡ d (mod m), то a + c ≡ b + d (mod m). ![]() ![]() Существует ли число, кратное 2020, в котором всех цифр 0, 1, 2, ..., 9 поровну? ![]() ![]() ![]() Основание треугольника равно a, а высота, опущенная на основание, равна h. В треугольник вписан квадрат, одна из сторон которого лежит на основании треугольника, а две вершины на боковых сторонах. Найдите отношение площади квадрата к площади треугольника. ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 517]
M – точка пересечения диагоналей трапеции ABCD. На основании BC выбрана такая точка P, что ∠APM = ∠DPM.
В треугольнике ABC биссектриса AD делит сторону BC в отношении BD : DC = 2 : 1. В каком отношении медиана CE делит эту биссектрису?
Основание треугольника равно a, а высота, опущенная на основание, равна h. В треугольник вписан квадрат, одна из сторон которого лежит на основании треугольника, а две вершины на боковых сторонах. Найдите отношение площади квадрата к площади треугольника.
В треугольнике ABC с прямым углом C проведены высота CD, и биссектриса CF, DK и DL – биссектрисы треугольников BDC и ADC.
На сторонах AB, AC и BC треугольника ABC взяли точки K, L и M соответственно так, что ∠A = ∠KLM = ∠C.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 517] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |