Страница:
<< 104 105 106 107
108 109 110 >> [Всего задач: 1026]
На сторонах произвольного треугольника ABC внешним образом построены равнобедренные треугольники AC1B, BA1C, CB1A с углами 2α, 2β и 2γ при вершинах
A1, B1 и C1, причём α + β + γ = 180°. Докажите, что углы треугольника A1B1C1
равны α, β и γ.
На неравных сторонах AB и AC треугольника ABC внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине, O – точка серединного перпендикуляра к отрезку BC, равноудалённая от точек B1 и C1. Докажите, что ∠B1OC1 = 180° – φ.
Дан параллелограмм ABCD, в котором AB = a, AD = b. Первая окружность имеет центр в вершине A и проходит через D, вторая имеет центр в C и проходит через D. Произвольная
окружность с центром B пересекает первую окружность в точках M1, N1, а вторую – в точках M2, N2. Чему равно отношение M1N1 : M2N2?
Из точки
A проведены касательные
AB и
AC к окружности и секущая, пересекающая
окружность в точках
D и
E ;
M —
середина отрезка
BC . Докажите, что
BM2
= DM· ME и угол
DME в два
раза больше угла
DBE или угла
DCE ;
кроме того,
BEM =
DEC .
На сторонах треугольника
ABC как на гипотенузах
строятся во внешнюю сторону равнобедренные прямоугольные
треугольники
ABD ,
BCE и
ACF . Докажите, что
отрезки
DE и
BF равны и перпендикулярны.
Страница:
<< 104 105 106 107
108 109 110 >> [Всего задач: 1026]