ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.
  а) Все три отрезка оказались равны. Верно ли, что треугольник равносторонний?
  б) Два отрезка оказались равны. Верно ли, что треугольник равнобедренный?
  в) Могут ли длины отрезков равняться 4, 4 и 3?

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 [Всего задач: 42]      



Задача 111726

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Вспомогательные подобные треугольники ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Неравенства для элементов треугольника (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Применение тригонометрических формул (геометрия) ]
[ Возрастание и убывание. Исследование функций ]
[ Доказательство от противного ]
Сложность: 5+
Классы: 8,9,10,11

В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.
  а) Все три отрезка оказались равны. Верно ли, что треугольник равносторонний?
  б) Два отрезка оказались равны. Верно ли, что треугольник равнобедренный?
  в) Могут ли длины отрезков равняться 4, 4 и 3?

Прислать комментарий     Решение

Задача 98552

Темы:   [ Четырехугольники (прочее) ]
[ Выпуклые многоугольники ]
[ Процессы и операции ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Примеры и контрпримеры. Конструкции ]
[ Неравенства для элементов треугольника (прочее) ]
[ Инварианты ]
Сложность: 4-
Классы: 9,10,11

Пусть F1, F2, F3, ... – последовательность выпуклых четырёхугольников, где Fk+1  (при k = 1, 2, 3, ...)  получается так: Fk разрезают по диагонали, одну из частей переворачивают и склеивают по линии разреза с другой частью. Какое наибольшее количество различных четырёхугольников может содержать эта последовательность? (Различными считаются многоугольники, которые нельзя совместить движением.)

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .