ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан выпуклый шестиугольник P1P2P3P4P5P6, все стороны которого равны. Каждую его вершину отразили симметрично относительно прямой, проходящей через две соседние вершины. Полученные точки обозначили через Q1, Q2, Q3, Q4, Q5 и Q6 соответственно. Докажите, что треугольники Q1Q3Q5 и Q2Q4Q6 равны. Решение |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 60]
Bыпуклый n-угольник P, где n > 3, разрезан на равные треугольники диагоналями, не пересекающимися внутри него.
Внутри равнобедренного треугольника $ABC$ отмечена точка $K$ так, что $CK = AB = BC$ и ∠ KAC = 30°. Найдите угол $AKB$.
В остроугольном треугольнике ABC проведены высоты AHA,
BHB и CHC.
В основании A1A2...An
пирамиды SA1A2...An лежит точка O, причём SA1 = SA2 = ... = SAn и ∠SA1O = ∠SA2O = ... = ∠SAnO.
Дан выпуклый шестиугольник P1P2P3P4P5P6, все стороны которого равны. Каждую его вершину отразили симметрично относительно прямой, проходящей через две соседние вершины. Полученные точки обозначили через Q1, Q2, Q3, Q4, Q5 и Q6 соответственно. Докажите, что треугольники Q1Q3Q5 и Q2Q4Q6 равны.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 60] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|