ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На биссектрисе AL треугольника ABC , в котором AL=AC , выбрана точка K таким образом, что CK=BL . Докажите, что CKL= ABC .

   Решение

Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 1026]      



Задача 115297

Тема:   [ Поворот помогает решить задачу ]
Сложность: 4
Классы: 8,9

На биссектрисе AL треугольника ABC , в котором AL=AC , выбрана точка K таким образом, что CK=BL . Докажите, что CKL= ABC .
Прислать комментарий     Решение


Задача 115305

Темы:   [ Симметрия помогает решить задачу ]
[ Неравенство треугольника (прочее) ]
Сложность: 4
Классы: 8,9

Дан вписанный четырёхугольник ABCD , в котором BC=CD . Точка E — середина диагонали AC . Докажите, что BE+DE AC .
Прислать комментарий     Решение


Задача 115338

Темы:   [ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9

На боковых сторонах AB и BC равнобедренного треугольника ABC с углом 44° при вершине взяты такие точки M и N, что  AM = BN = AC.  Точка X на луче CA такова, что  MX = AB  Найдите угол MXN.

Прислать комментарий     Решение

Задача 115598

Темы:   [ Симметрия помогает решить задачу ]
[ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

В четырёхугольнике ABCD точки M и N — середины сторон AB и CD соответственно. Прямые AD и BC пересекают прямую MN соответственно в точках P и Q . Докажите, что если BQM = APM , то BC=AD .
Прислать комментарий     Решение


Задача 115624

Темы:   [ Поворот помогает решить задачу ]
[ Правильные многоугольники ]
[ Вспомогательные равные треугольники ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема синусов ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 4
Классы: 8,9

Дан треугольник ABC, AA1, BB1 и CC1 – его биссектрисы. Известно, что величины углов A, B и C относятся как  4 : 2 : 1.  Докажите, что  A1B1 = A1C1.

Прислать комментарий     Решение

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 1026]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .