Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 1026]
CL – биссектриса треугольника
ABC ,
AC < BC .
На прямой, параллельной
CL и проходящей через вершину
B , выбрана такая точка
M , что
LM=LB . На отрезке
CM выбрана такая точка
K , что отрезок
AK делится
прямой
CL пополам. Докажите, что
CAK =
ABC .
Пусть
AB – наименьшая сторона остроугольного
треугольника
ABC . На сторонах
BC и
AC выбраны
точки
X и
Y соответственно. Докажите, что
длина ломаной
AXYB не меньше удвоенной длины
стороны
AB .
|
|
Сложность: 4 Классы: 8,9,10
|
Из центра симметрии двух равных пересекающихся окружностей проведены два луча, пересекающие
окружности в четырех точках, не лежащих на одной прямой. Докажите, что эти точки лежат на одной
окружности.
|
|
Сложность: 4 Классы: 8,9,10
|
Велосипедист путешествует по кольцевой дороге, двигаясь в одном направлении. Каждый день он проезжает 71 км и останавливается ночевать на обочине. На дороге есть аномальная зона длины 71 км. Если велосипедист останавливается в ней
на ночлег на расстоянии y км от одной границы зоны, просыпается
он в противоположном месте зоны, на расстоянии y км от другой её
границы. Докажите, что в каком бы месте велосипедист ни начал своё путешествие, рано или поздно он остановится в нём на ночлег или же в нём проснётся.
Вписанная в треугольник ABC окружность ω касается сторонAB и AC в точках D и E соответственно. Пусть P – произвольная точка на большей дуге DE окружности ω, F – точка, симметричная точке A относительно прямой DP, M – середина отрезка DE. Докажите, что угол FMP – прямой.
Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 1026]