ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В некоторых клетках доски  10× 10 поставили k  ладей, и затем отметили все клетки, которые бьет хотя бы одна ладья (считается, что ладья бьет клетку, на которой стоит). При каком наибольшем  k может оказаться, что после удаления с доски любой ладьи хотя бы одна отмеченная клетка окажется не под боем?

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 136]      



Задача 115425

Темы:   [ Оценка + пример ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 4
Классы: 8,9,10,11

В некоторых клетках доски  10× 10 поставили k  ладей, и затем отметили все клетки, которые бьет хотя бы одна ладья (считается, что ладья бьет клетку, на которой стоит). При каком наибольшем  k может оказаться, что после удаления с доски любой ладьи хотя бы одна отмеченная клетка окажется не под боем?
Прислать комментарий     Решение


Задача 67309

Темы:   [ Оценка + пример ]
[ Рациональные и иррациональные числа ]
Сложность: 4+
Классы: 8,9,10,11

На каждой из 99 карточек написано действительное число. Все 99 чисел различны, а их общая сумма иррациональна. Стопка из 99 карточек называется неудачной, если для каждого натурального $k$ от 1 до 99 сумма чисел на верхних $k$ карточках иррациональна. Петя вычислил, сколькими способами можно сложить исходные карточки в неудачную стопку. Какое наименьшее значение он мог получить?
Прислать комментарий     Решение


Задача 67277

Темы:   [ Оценка + пример ]
[ Планарные графы. Формула Эйлера ]
[ Теория графов (прочее) ]
Сложность: 5
Классы: 8,9,10,11

Автор: Закорко П.

У Карабаса-Барабаса есть большой участок земли в форме выпуклого $12$-угольника, в вершинах которого стоят фонари. Карабасу-Барабасу нужно поставить внутри участка некоторое конечное число фонарей, разделить его на треугольные участки с вершинами в фонарях и раздать эти участки актёрам театра. При этом каждый внутренний фонарь должен освещать не менее шести треугольных участков (фонарь светит недалеко, только на те участки, в вершине которых стоит). Какое максимальное количество треугольных участков может раздать Карабас-Барабас актёрам?
Прислать комментарий     Решение


Задача 35245

Темы:   [ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 2
Классы: 7,8,9

В гости пришло 10 гостей и каждый оставил в коридоре пару калош. Все пары калош имеют разные размеры. Гости начали расходиться по одному, одевая любую пару калош, в которые они могли влезть (т.е. каждый гость мог надеть пару калош, не меньшую, чем его собственные). В какой-то момент обнаружилось, что ни один из оставшихся гостей не может найти себе пару калош, чтобы уйти. Какое максимальное число гостей могло остаться?
Прислать комментарий     Решение


Задача 88003

Темы:   [ Математическая логика (прочее) ]
[ Оценка + пример ]
Сложность: 2
Классы: 5,6,7

Имеется пять звеньев цепи по 3 кольца в каждом. Какое наименьшее число колец нужно расковать и сковать, чтобы соединить эти звенья в одну цепь?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 136]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .