ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Шноль Д.Э.

Биссектрисы углов трапеции образуют при пересечении четырёхугольник с перпендикулярными диагоналями.
Докажите, что трапеция равнобокая.

   Решение

Задачи

Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 492]      



Задача 115308

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Симметрия помогает решить задачу ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3+
Классы: 8,9

В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Биссектриса угла ACB пересекает эти высоты в точках L и K соответственно.
Докажите, что середина отрезка KL равноудалена от точек A1 и B1.

Прислать комментарий     Решение

Задача 115882

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Шноль Д.Э.

Биссектрисы углов трапеции образуют при пересечении четырёхугольник с перпендикулярными диагоналями.
Докажите, что трапеция равнобокая.

Прислать комментарий     Решение

Задача 115885

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вневписанные окружности ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 3+
Классы: 8,9,10,11

Найдите геометрическое место центров всех вневписанных окружностей прямоугольных треугольников, имеющих данную гипотенузу.

Прислать комментарий     Решение

Задача 116561

Темы:   [ Три точки, лежащие на одной прямой ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла (ГМТ) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 9,10

В неравнобедренном остроугольном треугольнике ABC точки C0 и B0 – середины сторон AB и AC соответственно, O – центр описанной окружности, H – точка пересечения высот. Прямые BH и OC0 пересекаются в точке P, а прямые CH и OB0 – в точке Q. Оказалось, что четырёхугольник OPHQ – ромб. Докажите, что точки A, P и Q лежат на одной прямой.

Прислать комментарий     Решение

Задача 52350

Темы:   [ ГМТ и вписанный угол ]
[ Отрезок, видимый из двух точек под одним углом ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4-
Классы: 8,9

Найдите геометрическое место точек, из которых данный отрезок виден под данным углом.

Прислать комментарий     Решение


Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 492]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .