ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Выпуклой фигурой F нельзя накрыть полукруг радиуса R. Может ли случиться, что двумя фигурами, равными F, можно накрыть круг радиуса R?

Вниз   Решение


Можно ли расположить на плоскости четыре равных многоугольника так, чтобы каждые два из них не имели общих внутренних точек, но имели общий отрезок границы?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 204]      



Задача 97877

Темы:   [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10

Выпуклой фигурой F нельзя накрыть полукруг радиуса R. Может ли случиться, что двумя фигурами, равными F, можно накрыть круг радиуса R?

Прислать комментарий     Решение

Задача 98580

Темы:   [ Выпуклые многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

В выпуклом 2002-угольнике провели несколько диагоналей, не пересекающихся внутри 2002-угольника. В результате 2002-угольник разделился на 2000 треугольников. Могло ли случиться, что ровно у половины этих треугольников все стороны являются диагоналями этого 2002-угольника?

Прислать комментарий     Решение

Задача 115894

Темы:   [ Невыпуклые многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

Можно ли расположить на плоскости четыре равных многоугольника так, чтобы каждые два из них не имели общих внутренних точек, но имели общий отрезок границы?

Прислать комментарий     Решение

Задача 35005

Тема:   [ Выпуклые многоугольники ]
Сложность: 3+
Классы: 9,10,11

Докажите, что любой выпуклый многоугольник площади 1 можно поместить в прямоугольник площади 2.
Прислать комментарий     Решение


Задача 58147

Тема:   [ Невыпуклые многоугольники ]
Сложность: 3+
Классы: 7,8,9,10

а) Нарисуйте многоугольник и точку O внутри его так, чтобы ни одна сторона не была видна из нее полностью.
б) Нарисуйте многоугольник и точку O вне его так, чтобы ни одна сторона не была видна из нее полностью.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 204]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .