ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В остроугольном неравнобедренном треугольнике ABC проведены высоты AD , BE и CF . Точки X , Y и Z таковы, что D , E и F являются серединами отрезков BX , CY и AZ соответственно. Докажите, что центры окружностей, описанных около треугольников ACX , ABY и BCZ , являются вершинами треугольника, равного треугольнику ABC .

   Решение

Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 1026]      



Задача 115916

Темы:   [ Симметрия помогает решить задачу ]
[ Диаметр, основные свойства ]
Сложность: 4
Классы: 8,9

Подобные прямоугольные треугольники ABC и A'B'A с прямыми углами при вершинах B и B' расположены на плоскости так, что точка A' лежит на луче BC за точкой C . Докажите, что центр окружности, описанной около треугольника A'AC , лежит на прямой A'B' .
Прислать комментарий     Решение


Задача 115919

Темы:   [ Симметрия помогает решить задачу ]
[ ГМТ и вписанный угол ]
Сложность: 4
Классы: 8,9

В остроугольном неравнобедренном треугольнике ABC проведены высоты AD , BE и CF . Точки X , Y и Z таковы, что D , E и F являются серединами отрезков BX , CY и AZ соответственно. Докажите, что центры окружностей, описанных около треугольников ACX , ABY и BCZ , являются вершинами треугольника, равного треугольнику ABC .
Прислать комментарий     Решение


Задача 116107

Темы:   [ Повороты на $60^\circ$ и $120^\circ$ ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9


На сторонах треугольника ABC внешним образом построены правильные треугольники ABC1 , AB1C и A1BC . Пусть P и Q — середины отрезков A1B1 и A1C1 . Докажите, что треугольник APQ правильный.
Прислать комментарий     Решение


Задача 116108

Темы:   [ Поворот помогает решить задачу ]
[ Построения ]
Сложность: 4
Классы: 8,9

Даны две точки и окружность. С помощью циркуля и линейки проведите через данные точки две секущие, хорды которых внутри данной окружности были бы равны и пересекались бы под данным углом α .
Прислать комментарий     Решение


Задача 116109

Темы:   [ Повороты на $60^\circ$ и $120^\circ$ ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9

На сторонах треугольника ABC построены вне треугольника равносторонние треугольники BCA1 , CAB1 , ABC1 , и проведены отрезки AA1 , BB1 и CC1 . Докажите, что
а) эти отрезки равны между собой;
б) эти отрезки пересекаются в одной точке;
в) если эта точка находится внутри треугольника ABC , то сумма расстояний от неё до трёх вершин треугольника равна длине каждого из отрезков AA1 , BB1 , CC1 .
Прислать комментарий     Решение


Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 1026]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .