ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Шноль Д.Э.

Kаждый из двух подобных треугольников разрезали на два треугольника так, что одна из получившихся частей одного треугольника подобна одной из частей другого треугольника. Bерно ли, что оставшиеся части также подобны?

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 994]      



Задача 54657

Темы:   [ Признаки подобия ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 2
Классы: 8,9

Докажите, что высота прямоугольного треугольника, проведённая из вершины прямого угла, разбивает треугольник на два подобных треугольника.

Прислать комментарий     Решение

Задача 56451

Тема:   [ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 2
Классы: 8,9

В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Докажите, что  A1C·BC = B1C·AC.

Прислать комментарий     Решение

Задача 56508

Тема:   [ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 2
Классы: 8,9

Пусть AA1 и BB1 – высоты треугольника ABC. Докажите, что треугольники A1B1C и ABC подобны. Чему равен коэффициент подобия?

Прислать комментарий     Решение

Задача 116136

Темы:   [ Подобные треугольники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 10,11

Автор: Шноль Д.Э.

Kаждый из двух подобных треугольников разрезали на два треугольника так, что одна из получившихся частей одного треугольника подобна одной из частей другого треугольника. Bерно ли, что оставшиеся части также подобны?

Прислать комментарий     Решение

Задача 53737

Тема:   [ Признаки подобия ]
Сложность: 2+
Классы: 8,9

Каждая из двух сторон треугольника разделена на семь равных частей; соответствующие точки деления соединены отрезками.
Найдите эти отрезки, если третья сторона треугольника равна 28.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 994]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .