ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Биссектриса угла B и биссектриса внешнего угла D прямоугольника ABCD пересекают сторону AD и прямую AB в точках M и K соответственно.
Докажите, что отрезок MK равен и перпендикулярен диагонали прямоугольника.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 50]      



Задача 109548

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Автор: Вавилов В.

Три прямоугольных треугольника расположены в одной полуплоскости относительно данной прямой l так, что один из катетов каждого треугольника лежит на этой прямой. Известно, что существует прямая, параллельная l, пересекающая треугольники по равным отрезкам. Докажите, что если расположить треугольники в одной полуплоскости относительно прямой l так, чтобы другие их катеты лежали на прямой l, то также найдётся прямая, параллельная l , пересекающая их по равным отрезкам.

Прислать комментарий     Решение

Задача 115308

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Симметрия помогает решить задачу ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3+
Классы: 8,9

В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Биссектриса угла ACB пересекает эти высоты в точках L и K соответственно.
Докажите, что середина отрезка KL равноудалена от точек A1 и B1.

Прислать комментарий     Решение

Задача 115691

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Медиана, проведенная к гипотенузе ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

В выпуклом четырёхугольнике ABCD угол B – прямой, а диагональ AC является биссектрисой угла A и равна стороне AD. В треугольнике ADC провели высоту DH. Докажите, что прямая BH делит отрезок CD пополам.

Прислать комментарий     Решение

Задача 116179

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Медиана, проведенная к гипотенузе ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

В выпуклом четырёхугольнике ABCD  ∠ABC = 90°,  ∠BAC = ∠CAD,  AC = AD,  DH – высота треугольника ACD.
В каком отношении прямая BH делит отрезок CD?

Прислать комментарий     Решение

Задача 116154

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки равенства прямоугольных треугольников ]
[ Ортоцентр и ортотреугольник ]
[ Поворот помогает решить задачу ]
Сложность: 2
Классы: 8,9

Биссектриса угла B и биссектриса внешнего угла D прямоугольника ABCD пересекают сторону AD и прямую AB в точках M и K соответственно.
Докажите, что отрезок MK равен и перпендикулярен диагонали прямоугольника.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .