ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В четырёхугольнике ABCD найдите такую точку E , для которой отношение площадей треугольников EAB и ECD было равно 1:2, а треугольников EAD и EBC — 3:4, если известны координаты всех его вершин: A(-2;-4) , B(-2;3) , C(4;6) , D(4;-1) . ![]() |
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 226]
На сторонах AC и BC треугольника ABC выбраны точки M и N соответственно так, что MN || AB. На стороне AC отмечена точка K так, что CK = AM. Отрезки AN и BK пересекаются в точке F. Докажите, что площади треугольника ABF и четырёхугольника KFNC равны.
С помощью циркуля и линейки разделите данный параллелограмм на четыре равновеликих части прямыми, выходящими из одной вершины.
Дан треугольник ABC, в котором угол B равен 30o, AB = 4, BC = 6. Биссектриса угла B пересекает сторону AC в точке D. Найдите площадь треугольника ABD.
В прямоугольном треугольнике ABC с прямым углом B биссектриса угла A пересекает сторону BC в точке D. Известно, что BD = 4, DC = 6. Найдите площадь треугольника ADC.
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 226] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |