ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В стране больше 101 города. Столица соединена авиалиниями со 100 городами, а каждый город, кроме столицы, соединён авиалиниями ровно с десятью городами (если A соединён с B, то B соединён с A). Известно, что из каждого города можно попасть в любой другой (может быть, с пересадками). Доказать, что можно закрыть половину авиалиний, идущих из столицы, так, что возможность попасть из каждого города в любой другой сохранится. ![]() ![]() Две вершины квадрата расположены на гипотенузе равнобедренного прямоугольного треугольника, а две другие – на катетах. ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 993]
Две вершины квадрата расположены на гипотенузе равнобедренного прямоугольного треугольника, а две другие – на катетах.
В пространстве даны параллелограмм ABCD и плоскость M.
Расстояния от точек A, B и C до плоскости M равны
соответственно a, b и c.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 993] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |