Страница:
<< 43 44 45 46
47 48 49 >> [Всего задач: 372]
|
|
Сложность: 3 Классы: 9,10,11
|
На сторонах АВ, ВС и СА треугольника АВС отмечены точки С1, А1 и В1 соответственно так, что ВС1 = С1А1 = А1В1 = В1С.
Докажите, что точка пересечения высот треугольника С1А1В1 лежит на биссектрисе угла А.
Четырёхугольник ABCD вписан в окружность. Диагональ AC является биссектрисой угла BAD и пересекается с диагональю BD в точке K.
Найдите KC, если BC = 4, а AK = 6.
Докажите, что если в выпуклом пятиугольнике ABCDE ABC = ∠ADE и ∠AEC = ∠ADB, то ∠BAC = ∠DAE.
На сторонах AB, BC, CD, DA прямоугольника ABCD взяты соответственно точки K, L, M, N, отличные от вершин. Известно, что
KL || MN и
KM ⊥ NL. Докажите, что точка пересечения отрезков KM и LN лежит на диагонали BD прямоугольника.
Точка M, лежащая вне круга с диаметром AB, соединена с точками
A и B. Отрезки MA и MB пересекают окружность в точках C и D соответственно. Площадь круга, вписанного в треугольник AMB, в четыре раза больше, чем площадь круга, вписанного в треугольник
CMD. Найдите углы треугольника AMB, если известно, что один из них
в два раза больше другого.
Страница:
<< 43 44 45 46
47 48 49 >> [Всего задач: 372]