Страница:
<< 45 46 47 48
49 50 51 >> [Всего задач: 372]
|
|
Сложность: 3+ Классы: 8,9,10
|
Пусть AHa и BHb – высоты, а ALa и BLb – биссектрисы треугольника ABC. Известно, что HaHb || LaLb. Верно ли, что AC = BC?
|
|
Сложность: 3+ Классы: 8,9,10
|
На доске был изображен пятиугольник, вписанный в окружность. Маша измерила его углы и у нее получилось, что они равны 80°, 90°, 100°, 130° и 140° (именно в таком порядке). Не ошиблась ли Маша?
|
|
Сложность: 3+ Классы: 9,10,11
|
Дан правильный семиугольник A1A2A3A4A5A6A7. Прямые A2A3 и A5A6 пересекаются в точке X, а прямые A3A5 и A1A6 – в точке Y.
Докажите, что прямые A1A2 и XY параллельны.
В параллелограмме ABCD провели трисектрисы углов A и B. Трисектрисы, ближние к стороне AB, пересекаются в точке O. Обозначим пересечение трисектрисы AO со второй трисектрисой угла B через A1, а пересечение трисектрисы BO со второй трисектрисой угла A через B1. Пусть M – середина отрезка A1B1, а прямая MO пересекает сторону AB в точке N. Докажите, что треугольник A1B1N – равносторонний.
В ромбе ABCD на стороне BC нашлась такая точка E, что AE = CD. Отрезок ED пересекается с описанной окружностью треугольника AEB в точке F. Докажите, что точки A, F и C лежат на одной прямой.
Страница:
<< 45 46 47 48
49 50 51 >> [Всего задач: 372]