Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 374]
На сторонах AB, BC, CD, DA прямоугольника ABCD взяты соответственно точки K, L, M, N, отличные от вершин. Известно, что
KL || MN и
KM ⊥ NL. Докажите, что точка пересечения отрезков KM и LN лежит на диагонали BD прямоугольника.
Точка M, лежащая вне круга с диаметром AB, соединена с точками
A и B. Отрезки MA и MB пересекают окружность в точках C и D соответственно. Площадь круга, вписанного в треугольник AMB, в четыре раза больше, чем площадь круга, вписанного в треугольник
CMD. Найдите углы треугольника AMB, если известно, что один из них
в два раза больше другого.
В окружность радиуса 5 вписан четырёхугольник ABCD, у которого угол D прямой, AB : BC = 3 : 4.
Найдите периметр четырёхугольника ABCD, если его площадь равна 44.
Найдите геометрическое место точек M, лежащих внутри ромба ABCD и обладающих тем свойством, что ∠AMD + ∠BMC = 180°.
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что если выпуклый четырёхугольник ABCD можно разрезать на два подобных четырёхугольника, то ABCD – трапеция или параллелограмм.
Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 374]