ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутри угла AOB, равного 120°, проведены лучи OC и OD так, что каждый из них является биссектрисой какого-то из углов, получившихся на чертеже. Найдите величину угла AOC, указав все возможные варианты.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 116791

Тема:   [ Прямые, лучи, отрезки и углы (прочее) ]
Сложность: 3
Классы: 5,6,7

Внутри угла AOB, равного 120°, проведены лучи OC и OD так, что каждый из них является биссектрисой какого-то из углов, получившихся на чертеже. Найдите величину угла AOC, указав все возможные варианты.

Прислать комментарий     Решение

Задача 116556

Темы:   [ Вписанные и описанные окружности ]
[ Прямые, лучи, отрезки и углы (прочее) ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3-
Классы: 9,10

На стороне AC остроугольного треугольника ABC выбраны точки M и K так, что ∠ABM = ∠CBK.
Докажите, что центры описанных окружностей треугольников ABM, ABK, CBM и CBK лежат на одной окружности.

Прислать комментарий     Решение

Задача 37549

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Прямые, лучи, отрезки и углы (прочее) ]
[ Треугольники (прочее) ]
Сложность: 3
Классы: 6,7,8

Докажите, что никакая прямая не может пересечь все три стороны треугольника (в точках, отличных от вершин).

Прислать комментарий     Решение

Задача 116043

Темы:   [ Индукция (прочее) ]
[ Прямые, лучи, отрезки и углы (прочее) ]
Сложность: 3
Классы: 8

Петя умеет на любом отрезке отмечать точки, которые делят этот отрезок пополам или в отношении  n : (n + 1),  где n – любое натуральное число. Петя утверждает, что этого достаточно, чтобы на любом отрезке отметить точку, которая делит его в любом заданном рациональном отношении. Прав ли он?

Прислать комментарий     Решение

Задача 35651

Темы:   [ Покрытия ]
[ Прямые, лучи, отрезки и углы (прочее) ]
Сложность: 3+
Классы: 8,9,10

Дано бесконечное число углов. Докажите, что этими углами можно покрыть плоскость.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .