ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а)  a + 1  делится на 3. Докажите, что  4 + 7a  делится на 3.

б)  2 + a  и  35 – b  делятся на 11. Докажите, что  a + b  делится на 11.

   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 73740

Темы:   [ Линейная и полилинейная алгебра ]
[ Системы линейных уравнений ]
[ Принцип Дирихле (прочее) ]
[ Числовые таблицы и их свойства ]
[ Теория множеств (прочее) ]
[ Четность и нечетность ]
Сложность: 4
Классы: 9,10,11

24 студента решали 25 задач. У преподавателя есть таблица размером 24×25, в которой записано, кто какие задачи решил. Оказалось, что каждую задачу решил хотя бы один студент. Докажите, что
  а) можно отметить некоторые задачи "галочкой" так, что каждый из студентов решил чётное число (в частности, может быть, нуль) отмеченных задач;
  б) можно отметить некоторые из задач знаком "+", а некоторые из остальных – знаком "–" и приписать каждой задаче некоторое натуральное число баллов так, чтобы каждый студент набрал поровну баллов за задачи, отмеченные знаками "+" и "–".
Прислать комментарий     Решение


Задача 73647

Темы:   [ Линейная и полилинейная алгебра ]
[ Числовые таблицы и их свойства ]
[ Линейные зависимости векторов ]
Сложность: 5
Классы: 10,11

В таблице размером m×n записаны числа так, что для каждых двух строк и каждых двух столбцов сумма чисел в двух противоположных вершинах образуемого ими прямоугольника равна сумме чисел в двух других его вершинах. Часть чисел стёрли, но по оставшимся можно восстановить стёртые. Докажите, что осталось не меньше чем  (n + m – 1)  чисел.

Прислать комментарий     Решение

Задача 30403

Темы:   [ Делимость чисел. Общие свойства ]
[ Линейная и полилинейная алгебра ]
Сложность: 2+
Классы: 7,8,9

а)  a + 1  делится на 3. Докажите, что  4 + 7a  делится на 3.

б)  2 + a  и  35 – b  делятся на 11. Докажите, что  a + b  делится на 11.

Прислать комментарий     Решение

Задача 60501

Темы:   [ Делимость чисел. Общие свойства ]
[ Линейная и полилинейная алгебра ]
Сложность: 2+
Классы: 8,9

Для некоторых целых x и y число  3x + 2y  делится на 23. Докажите, что число  17x + 19y  также делится на 23.

Прислать комментарий     Решение

Задача 35510

Темы:   [ Делимость чисел. Общие свойства ]
[ Линейная и полилинейная алгебра ]
Сложность: 3-
Классы: 7,8,9

Известно, что выражение  14x + 13y  делится на 11 при некоторых целых x и y. Докажите, что  19x + 9y  также делится на 11 при таких x и y.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .