ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Назовём натуральное число n удобным, если  n² + 1  делится на 1000001. Докажите, что среди чисел 1, 2, ..., 1000000 чётное число удобных.

   Решение

Задачи

Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 2440]      



Задача 30599

Темы:   [ Деление с остатком ]
[ Разложение на множители ]
[ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 7,8,9

Докажите, что среди 51 целого числа найдутся два, квадраты которых дают одинаковые остатки при делении на 100.

Прислать комментарий     Решение

Задача 30600

Темы:   [ Делимость чисел. Общие свойства ]
[ Симметрия и инволютивные преобразования ]
Сложность: 3+
Классы: 7,8,9

Назовём натуральное число n удобным, если  n² + 1  делится на 1000001. Докажите, что среди чисел 1, 2, ..., 1000000 чётное число удобных.

Прислать комментарий     Решение

Задача 30606

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9

Существует ли такое натуральное n, что  n² + n + 1  делится на 1955?

Прислать комментарий     Решение

Задача 30607

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Докажите, что  11n+2 + 122n+1  делится на 133 при любом натуральном n.

Прислать комментарий     Решение

Задача 30631

Тема:   [ Признаки делимости на 11 ]
Сложность: 3+
Классы: 7,8,9

Пусть a, b, c, d – различные цифры. Докажите, что  cdcdcdcd  не делится на  aabb.

Прислать комментарий     Решение

Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .