ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На плоскости нарисовано несколько многоугольников, каждые два из которых имеют общую точку.
Докажите, что найдётся прямая, пересекающая все эти многоугольники.

Вниз   Решение


Найти все такие натуральные числа p, что p и  p² + 2  – простые.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 201]      



Задача 30378

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 2+
Классы: 7,8,9

а) Докажите, что  p² – 1  делится на 24, если p – простое число и  p > 3.
б) Докажите, что  p² – q²  делится на 24, если p и q – простые числа, большие 3.

Прислать комментарий     Решение

Задача 30382

Темы:   [ Простые числа и их свойства ]
[ Арифметическая прогрессия ]
[ Делимость чисел. Общие свойства ]
Сложность: 2+
Классы: 8,9

Три простых числа p, q и r, большие 3, образуют арифметическую прогрессию:  q = p + d,  r = p + 2d.  Докажите, что d делится на 6.

Прислать комментарий     Решение

Задача 31275

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Найти все такие натуральные числа p, что p и  p² + 2  – простые.

Прислать комментарий     Решение

Задача 31279

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Найти все натуральные числа p, что p,  p² + 4  и  p² + 6  – простые числа.

Прислать комментарий     Решение

Задача 34835

Темы:   [ Простые числа и их свойства ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 2+
Классы: 7,8,9

Является ли число  49 + 610 + 320  простым?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 201]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .