ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите все простые числа, которые нельзя записать в виде суммы двух составных.

   Решение

Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 629]      



Задача 30808

Темы:   [ Обход графов ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9

На плоскости дано 100 окружностей, составляющих связную (то есть не распадающуюся на части) фигуру.
Докажите, что эту фигуру можно нарисовать, не отрывая карандаша от бумаги и не проводя дважды одну и ту же линию.

Прислать комментарий     Решение

Задача 31072

Темы:   [ Связность и разложение на связные компоненты ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3
Классы: 6,7,8

В некоторой стране из столицы выходит 89 дорог, из города Дальний – одна дорога, из остальных 1988 городов – по 20 дорог.
Доказать, что из столицы можно проехать в Дальний.

Прислать комментарий     Решение

Задача 32042

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 3
Классы: 5,6,7,8,9

На столе стоят 16 стаканов. Из них 15 стаканов стоят правильно, а один перевёрнут донышком вверх. Разрешается одновременно переворачивать любые четыре стакана. Можно ли, повторяя эту операцию, поставить все стаканы правильно?

Прислать комментарий     Решение

Задача 32114

Темы:   [ Простые числа и их свойства ]
[ Четность и нечетность ]
Сложность: 3
Классы: 6,7,8,9

Найдите все простые числа, которые нельзя записать в виде суммы двух составных.

Прислать комментарий     Решение

Задача 32824

Темы:   [ Турниры и турнирные таблицы ]
[ Четность и нечетность ]
[ Степень вершины ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9

Трое друзей играли в шашки. Один из них сыграл 25 игр, а другой – 17 игр. Мог ли третий участник сыграть   а) 34;   б) 35;   в) 56 игр?

Прислать комментарий     Решение

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 629]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .