ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Бился Иван-Царевич со Змеем Горынычем, трёхглавым и трёххвостым. Одним ударом он мог срубить либо одну голову, либо один хвост, либо две головы, либо два хвоста. Но, если срубить один хвост, то вырастут два; если срубить два хвоста – вырастет голова; если срубить голову, то вырастает новая голова, а если срубить две головы, то не вырастет ничего. Как должен действовать Иван-Царевич, чтобы срубить Змею все головы и все хвосты как можно быстрее?

   Решение

Задачи

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 629]      



Задача 34906

Темы:   [ Числовые таблицы и их свойства ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8,9

В клетки таблицы 8×8 записаны числа 1 и –1 так, что в каждой строке, в каждом столбце и на каждой диагонали (в частности, в угловых клетках) произведения чисел равны 1. Какое максимальное число минус единиц при этом возможно?

Прислать комментарий     Решение

Задача 34988

Темы:   [ Делимость чисел. Общие свойства ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9

Докажите, что ни при каком натуральном m число  1998m – 1  не делится на 1000m – 1.

Прислать комментарий     Решение

Задача 35126

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3
Классы: 7,8,9

Бился Иван-Царевич со Змеем Горынычем, трёхглавым и трёххвостым. Одним ударом он мог срубить либо одну голову, либо один хвост, либо две головы, либо два хвоста. Но, если срубить один хвост, то вырастут два; если срубить два хвоста – вырастет голова; если срубить голову, то вырастает новая голова, а если срубить две головы, то не вырастет ничего. Как должен действовать Иван-Царевич, чтобы срубить Змею все головы и все хвосты как можно быстрее?

Прислать комментарий     Решение

Задача 35300

Темы:   [ Уравнения в целых числах ]
[ Четность и нечетность ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9,10

Доказать, что уравнение  m² + n² = 1980  не имеет решений в целых числах.

Прислать комментарий     Решение

Задача 35302

Темы:   [ Уравнения в целых числах ]
[ Четность и нечетность ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 9,10

Доказать, что уравнение  19x² – 76y² = 1976  не имеет решений в целых числах.

Прислать комментарий     Решение

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 629]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .