ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что сумма углов ABC, BCD, CDA, DAB пространственного четырехугольника ABCD составляет не больше 3600.

   Решение

Задачи

Страница: << 1 2 [Всего задач: 9]      



Задача 64477

Темы:   [ Пространственные многоугольники ]
[ Прямые и плоскости в пространстве (прочее) ]
[ Проектирование помогает решить задачу ]
[ Теорема о трех перпендикулярах ]
[ Окружности, вписанные в сегмент ]
[ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 10,11

Общие перпендикуляры к противоположным сторонам пространственного четырёхугольника взаимно перпендикулярны.
Докажите, что они пересекаются.

Прислать комментарий     Решение

Задача 35247

Темы:   [ Неравенства с трехгранными углами ]
[ Пространственные многоугольники ]
Сложность: 3+
Классы: 10,11

Докажите, что сумма углов ABC, BCD, CDA, DAB пространственного четырехугольника ABCD составляет не больше 3600.
Прислать комментарий     Решение


Задача 108000

Темы:   [ Максимальное/минимальное расстояние ]
[ Правильный тетраэдр ]
[ Пространственные многоугольники ]
[ Движение помогает решить задачу ]
[ Длины и периметры (геометрические неравенства) ]
[ Медиана пирамиды (тетраэдра) ]
[ Проектирование помогает решить задачу ]
Сложность: 6-
Классы: 10,11

Муха летает внутри правильного тетраэдра с ребром a. Какое наименьшее расстояние она должна пролететь, чтобы побывать на каждой грани и вернуться в исходную точку?
Прислать комментарий     Решение


Задача 78107

Темы:   [ Перпендикулярные прямые в пространстве ]
[ Периодичность и непериодичность ]
[ Подсчет двумя способами ]
[ Делимость чисел. Общие свойства ]
[ Пространственные многоугольники ]
Сложность: 3+
Классы: 10,11

В пространстве построена замкнутая ломаная так, что все звенья имеют одинаковую длину и каждые три последовательных звена попарно перпендикулярны. Доказать, что число звеньев делится на 6.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .