Страница:
<< 1 2 [Всего задач: 9]
|
|
Сложность: 5 Классы: 10,11
|
Общие перпендикуляры к противоположным сторонам пространственного четырёхугольника взаимно перпендикулярны.
Докажите, что они пересекаются.
|
|
Сложность: 3+ Классы: 10,11
|
Докажите, что сумма углов ABC, BCD, CDA, DAB пространственного
четырехугольника ABCD составляет не больше 360
0.
|
|
Сложность: 6- Классы: 10,11
|
Муха летает внутри правильного тетраэдра с ребром
a. Какое наименьшее
расстояние она должна пролететь, чтобы побывать на каждой грани и вернуться в
исходную точку?
|
|
Сложность: 3+ Классы: 10,11
|
В пространстве построена замкнутая ломаная так, что все звенья имеют одинаковую
длину и каждые три последовательных звена попарно перпендикулярны. Доказать, что число звеньев делится на 6.
Страница:
<< 1 2 [Всего задач: 9]