ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Правильный треугольник разрезать на четыре части так, чтобы из них можно было сложить квадрат.

Вниз   Решение


Три одинаковых треугольника разрезать каждый на две части так, чтобы из них можно было сложить один треугольник.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 17]      



Задача 58220

Тема:   [ Равносоставленные фигуры ]
Сложность: 2
Классы: 8,9

Разрежьте произвольный треугольник на 3 части и сложите из них прямоугольник.
Прислать комментарий     Решение


Задача 58221

Темы:   [ Равносоставленные фигуры ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 2+
Классы: 8,9

Разрежьте произвольный треугольник на части, из которых можно составить треугольник, симметричный исходному относительно некоторой прямой (части переворачивать нельзя).

Прислать комментарий     Решение

Задача 58222

Тема:   [ Равносоставленные фигуры ]
Сложность: 3
Классы: 8,9

Разрежьте правильный треугольник шестью прямыми на части и сложите из них 7 одинаковых правильных треугольников.
Прислать комментарий     Решение


Задача 35388

Тема:   [ Равносоставленные фигуры ]
Сложность: 3
Классы: 8,9,10

Правильный треугольник разрезать на четыре части так, чтобы из них можно было сложить квадрат.
Прислать комментарий     Решение


Задача 35389

Темы:   [ Равносоставленные фигуры ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3
Классы: 8,9,10

Три одинаковых треугольника разрезать каждый на две части так, чтобы из них можно было сложить один треугольник.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .