ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На стороне AC остроугольного треугольника ABC выбраны точки M и K так, что ∠ABM = ∠CBK.
Докажите, что центры описанных окружностей треугольников ABM, ABK, CBM и CBK лежат на одной окружности.

Вниз   Решение


Три натуральных числа таковы, что последняя цифра суммы любых двух из них является последней цифрой третьего числа. Произведение этих трёх чисел записали на доске, а затем всё, кроме трёх последних цифр этого произведения, стёрли. Какие три цифры могли остаться на доске?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 17]      



Задача 58224

Тема:   [ Равносоставленные фигуры ]
Сложность: 4+
Классы: 8,9

Разрежьте квадрат на 6 частей и сложите из них три одинаковых квадрата.
Прислать комментарий     Решение


Задача 105196

Темы:   [ Равносоставленные фигуры ]
[ Перегруппировка площадей ]
[ Разрезания на параллелограммы ]
Сложность: 5
Классы: 8,9,10

а) Показать, что любой треугольник можно разрезать на несколько частей, из которых можно сложить прямоугольник;
б) показать, что любой прямоугольник можно разрезать на несколько частей, из которых можно сложить квадрат;
в) верно ли, что любой многоугольник можно разрезать на несколько частей, из которых можно сложить квадрат?
Прислать комментарий     Решение


Задача 58225

Тема:   [ Равносоставленные фигуры ]
Сложность: 6
Классы: 8,9

Даны два параллелограмма равной площади с общей стороной. Докажите, что первый параллелограмм можно разрезать на части и сложить из них второй.
Прислать комментарий     Решение


Задача 58226

Тема:   [ Равносоставленные фигуры ]
Сложность: 6
Классы: 8,9

Докажите, что любой прямоугольник можно разрезать на части и сложить из них прямоугольник со стороной 1.
Прислать комментарий     Решение


Задача 58227

Тема:   [ Равносоставленные фигуры ]
Сложность: 6
Классы: 8,9

а) Докажите, что любой многоугольник можно разрезать на части и сложить из них прямоугольник со стороной 1.
б) Даны два многоугольника равной площади. Докажите, что первый многоугольник можно разрезать на части и сложить из них второй.
Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .