ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 >> [Всего задач: 17]      



Задача 58224

Тема:   [ Равносоставленные фигуры ]
Сложность: 4+
Классы: 8,9

Разрежьте квадрат на 6 частей и сложите из них три одинаковых квадрата.
Прислать комментарий     Решение


Задача 105196

Темы:   [ Равносоставленные фигуры ]
[ Перегруппировка площадей ]
[ Разрезания на параллелограммы ]
Сложность: 5
Классы: 8,9,10

а) Показать, что любой треугольник можно разрезать на несколько частей, из которых можно сложить прямоугольник;
б) показать, что любой прямоугольник можно разрезать на несколько частей, из которых можно сложить квадрат;
в) верно ли, что любой многоугольник можно разрезать на несколько частей, из которых можно сложить квадрат?
Прислать комментарий     Решение


Задача 58225

Тема:   [ Равносоставленные фигуры ]
Сложность: 6
Классы: 8,9

Даны два параллелограмма равной площади с общей стороной. Докажите, что первый параллелограмм можно разрезать на части и сложить из них второй.
Прислать комментарий     Решение


Задача 58226

Тема:   [ Равносоставленные фигуры ]
Сложность: 6
Классы: 8,9

Докажите, что любой прямоугольник можно разрезать на части и сложить из них прямоугольник со стороной 1.
Прислать комментарий     Решение


Задача 58227

Тема:   [ Равносоставленные фигуры ]
Сложность: 6
Классы: 8,9

а) Докажите, что любой многоугольник можно разрезать на части и сложить из них прямоугольник со стороной 1.
б) Даны два многоугольника равной площади. Докажите, что первый многоугольник можно разрезать на части и сложить из них второй.
Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .