ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Стороны BC, CA, AB треугольника ABC касаются вписанной в него окружности в точках D, E, F. Докажите, что треугольник DEF – остроугольный.

   Решение

Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 239]      



Задача 108887

Темы:   [ Вспомогательные равные треугольники ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Четырехугольники (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

KLMN – выпуклый четырёхугольник, в котором равны углы K и L. Серединные перпендикуляры к сторонам KN и LM пересекаются на стороне KL.
Докажите, что в этом четырёхугольнике равны диагонали.

Прислать комментарий     Решение

Задача 32080

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Принцип Дирихле (углы и длины) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10

На плоскости даны четыре точки, не лежащие на одной прямой. Докажите, что существует неостроугольный треугольник с вершинами в этих точках.

Прислать комментарий     Решение

Задача 35458

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Стороны BC, CA, AB треугольника ABC касаются вписанной в него окружности в точках D, E, F. Докажите, что треугольник DEF – остроугольный.

Прислать комментарий     Решение

Задача 52385

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Связь величины угла с длиной дуги и хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Во вписанном четырёхугольнике ABCD известны углы:  ∠DAB = α,  ∠ABC = β,  ∠BKC = γ,  где K – точка пересечения диагоналей. Найдите угол ACD.

Прислать комментарий     Решение


Задача 64944

Темы:   [ Признаки и свойства параллелограмма ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 3+
Классы: 8,9

Вершину A параллелограмма ABCD соединили отрезками с серединами сторон BC и CD. Один из этих отрезков оказался вдвое длиннее другого. Определите, каким является угол ВАD: острым, прямым или тупым.

Прислать комментарий     Решение

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .