ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости нарисованы два квадрата - ABCD и KLMN (их вершины перечислены против часовой стрелки). Докажите, что середины отрезков AK, BL, CM, DN также являются вершинами квадрата.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 501]      



Задача 66124

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Перебор случаев ]
Сложность: 3-
Классы: 7

Сумма двух сторон прямоугольника равна 7 см, а сумма трёх его сторон равна 9,5 см. Найдите периметр прямоугольника.

Прислать комментарий     Решение

Задача 116458

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Неравенство треугольника (прочее) ]
[ Доказательство от противного ]
Сложность: 3-
Классы: 8,9,10

Автор: Фольклор

На плоскости дан квадрат и точка Р. Могут ли расстояния от точки Р до вершин квадрата оказаться равными 1, 1, 2 и 3?

Прислать комментарий     Решение

Задача 52531

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Диаметр, хорды и секущие ]
Сложность: 3
Классы: 8,9

В круге радиуса R даны два взаимно перпендикулярных диаметра. Произвольная точка окружности спроектирована на эти диаметры. Найдите расстояние между проекциями точки.

Прислать комментарий     Решение


Задача 54420

Тема:   [ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике ABC расположен прямоугольник ADKM так, что его сторона AD лежит на катете AB, сторона AM - на катете AC, а вершина K - на гипотенузе BC. Катет AB равен 5, а катет AC равен 12. Найдите стороны прямоугольника ADKM, если его площадь равна 40/3, а диагональ меньше 8.

Прислать комментарий     Решение


Задача 35477

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Векторы (прочее) ]
Сложность: 3
Классы: 9,10

На плоскости нарисованы два квадрата - ABCD и KLMN (их вершины перечислены против часовой стрелки). Докажите, что середины отрезков AK, BL, CM, DN также являются вершинами квадрата.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .