Версия для печати
Убрать все задачи
Доска имеет форму креста, который получается, если из квадратной доски 4×4 выкинуть угловые клетки.
Можно ли обойти её ходом шахматного коня и вернуться на исходное поле, побывав на всех полях ровно по разу?

Решение
В классе 33 человека. У каждого ученика спросили, сколько
у него в классе тезок и сколько однофамильцев (включая родственников).
Оказалось, что среди названных чисел встретились все целые от 0 до 10
включительно. Докажите, что в классе есть два ученика с одинаковыми именем
и фамилией.


Решение
В четырёхугольнике
ABCD точки
K ,
L ,
M ,
N –
середины сторон соответственно
AB ,
BC ,
CD ,
DA .
Прямые
AL и
CK пересекаются в точке
P , прямые
AM и
CN – пересекаются в точке
Q . Оказалось, что
APCQ – параллелограмм. Докажите, что
ABCD – тоже
параллелограмм.


Решение
Дана выпуклая фигура и точка A внутри нее.
Докажите, что найдется хорда (т.е. отрезок,
соединяющий две граничные точки выпуклой фигуры), проходящая через
точку A и делящаяся точкой A пополам.

Решение