ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существует ли непрерывная функция, принимающая каждое действительное значение ровно 3 раза?

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 98]      



Задача 35771

Темы:   [ Периодичность и непериодичность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Существует ли непрерывная функция, принимающая каждое действительное значение ровно 3 раза?
Прислать комментарий     Решение


Задача 109912

Темы:   [ Характеристические свойства и рекуррентные соотношения ]
[ Методы решения задач с параметром ]
Сложность: 4-
Классы: 10,11

Для каких α существует функция f : , отличная от константы, такая, что

f(α(x+y))=f(x)+f(y);?

Прислать комментарий     Решение

Задача 64770

Темы:   [ Монотонность, ограниченность ]
[ Доказательство от противного ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 9,10,11

Автор: Храбров А.

Дана функция f, определённая на множестве действительных чисел и принимающая действительные значения. Известно, что для любых x и y, таких, что  x > y,  верно неравенство  (f(x))² ≤ f(y).  Докажите, что множество значений функции содержится в промежутке  [0,1].

Прислать комментарий     Решение

Задача 73561

Тема:   [ Характеристические свойства и рекуррентные соотношения ]
Сложность: 4-
Классы: 8,9,10

Предположим, что в каждом номере нашего журнала в задачнике «Кванта» будет пять задач по математике. Обозначим через f(x, y) номер первой из задач x-го номера за y год. Напишите общую формулу для f(x, y), где 1 £ x £ 12 и 1970 £ x £ 1989. Решите уравнение f(x, y) = y.

Например, f(6, 1970) = 26. Начиная с 1989 года, количество задач стало менее предсказуемым. Например, в последние годы в половине номеров по 5 задач, а в других номерах по 10. Да и самих номеров журнала сейчас уже не 12, а 6.
Прислать комментарий     Решение


Задача 109707

Тема:   [ Характеристические свойства и рекуррентные соотношения ]
Сложность: 4-
Классы: 9,10,11

Найдите все функции f : , которые для всех x,y,z удовлетворяют неравенству f(x+y)+f(y+z)+f(z+x) 3f(x+2y+3z).
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 98]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .