ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Точка M внутри окружности делит хорду этой окружности на отрезки, равные a и b. Через точку M проведена хорда AB, делящаяся точкой M пополам. Найдите AB. ![]() ![]() Даны многочлены P1, P2, ... , P5, имеющие суммы коэффициентов, равные 1, 2, 3, 4, 5 соответственно.
![]() ![]() |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 50]
Найдите сумму всех коэффициентов многочлена (x² – 3x + 1)100 после раскрытия скобок и приведения подобных членов.
p(x) – многочлен с целыми коэффициентами. Известно, что для некоторых целых a и b выполняется равенство: p(a) – p(b) = 1.
Даны многочлены P1, P2, ... , P5, имеющие суммы коэффициентов, равные 1, 2, 3, 4, 5 соответственно.
Найдите сумму коэффициентов при чётных степенях в многочлене, который получается из выражения f(x) = (x³ – x + 1)100 в результате раскрытия скобок и приведения подобных слагаемых.
Докажите, что если в выражении (x² – x + 1)2014 раскрыть скобки и привести подобные слагаемые, то какой-нибудь коэффициент полученного многочлена будет отрицательным.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 50] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |