Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 50]
|
|
Сложность: 4+ Классы: 9,10,11
|
Даны положительные рациональные числа a, b. Один из корней трёхчлена x² – ax + b – рациональное число, в несократимой записи имеющее вид m/n. Докажите, что знаменатель хотя бы одного из чисел a и b (в несократимой записи) не меньше n2/3.
|
|
Сложность: 4+ Классы: 9,10,11
|
Найдите все такие натуральные n, что при некоторых отличных от нуля действительных числах a, b, c, d многочлен (ax + b)1000 – (cx + d)1000 после раскрытия скобок и приведения всех подобных слагаемых имеет ровно n ненулевых коэффициентов.
|
|
Сложность: 5- Классы: 9,10
|
Пусть 1 + x + x² + ... + xn–1 = F(x)G(x), где F и G – многочлены, коэффициенты которых – нули и единицы (n > 1).
Докажите, что один из многочленов F, G представим в виде (1 + x + x² + ... + xk–1)T(x), где T(x) – также многочлен с коэффициентами 0 и 1 (k > 1).
|
|
Сложность: 5- Классы: 9,10,11
|
Существует ли такое конечное множество M ненулевых действительных чисел, что для любого натурального n найдется многочлен степени не меньше n с коэффициентами из множества M, все корни которого
действительны и также принадлежат M?
|
|
Сложность: 5- Классы: 9,10,11
|
Существуют ли такие ненулевые числа a, b, c, что при любом n > 3 можно найти многочлен вида Pn(x) = xn + ... + ax² + bx + c, имеющий ровно n (не обязательно различных) целых корней?
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 50]