ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Имеется таблица 1999×2001. Известно, что произведение чисел в каждой строке отрицательно.
Докажите, что найдётся столбец, произведение чисел в котором тоже отрицательно.

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 629]      



Задача 35832

Темы:   [ Четность и нечетность ]
[ Подсчет двумя способами ]
Сложность: 3
Классы: 6,7

Имеется таблица 1999×2001. Известно, что произведение чисел в каждой строке отрицательно.
Докажите, что найдётся столбец, произведение чисел в котором тоже отрицательно.

Прислать комментарий     Решение

Задача 35834

Темы:   [ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7

Найти наибольшее значение, которое может принимать выражение  aek – afh + bfg – bdk + cdh – ceg,  если каждое из чисел a, b, c, d, e, f, g, h, k равно ±1.

Прислать комментарий     Решение

Задача 58160

Темы:   [ Четность и нечетность ]
[ Произвольные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8

Может ли прямая пересекать (во внутренних точках) все стороны невыпуклого:
  а) (2n+1)-угольника;  б) 2n-угольника?

Прислать комментарий     Решение

Задача 60630

Темы:   [ Четность и нечетность ]
[ Числовые таблицы и их свойства ]
[ Инварианты ]
Сложность: 3
Классы: 7,8

На доске написано 10 плюсов и 15 минусов. Разрешается стереть любые два знака и написать вместо них плюс, если они одинаковы, и минус в противном случае. Какой знак останется на доске после выполнения 24 таких операций?

Прислать комментарий     Решение

Задача 60634

Темы:   [ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
[ Инварианты ]
Сложность: 3
Классы: 7,8

Вдоль улицы стоят шесть деревьев, и на каждом из них сидит по вороне. Раз в час две из них взлетают, и каждая садится на одно из соседних деревьев. Может ли получиться так, что все вороны соберутся на одном дереве?

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 629]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .