ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Четырёхугольник ABCD вписан в окружность. Диагональ AC является биссектрисой угла BAD и пересекается с диагональю BD в точке K.
Найдите KC, если  BC = 4,  а  AK = 6.

   Решение

Задачи

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 496]      



Задача 52403

Темы:   [ Признаки подобия ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Четырёхугольник ABCD вписан в окружность. Диагональ AC является биссектрисой угла BAD и пересекается с диагональю BD в точке K.
Найдите KC, если  BC = 4,  а  AK = 6.

Прислать комментарий     Решение

Задача 52490

Темы:   [ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Пятиугольники ]
Сложность: 3+
Классы: 8,9

Докажите, что если в выпуклом пятиугольнике ABCDE  ABC = ∠ADE  и ∠AEC = ∠ADB,  то  ∠BAC = ∠DAE.

Прислать комментарий     Решение

Задача 53138

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вспомогательная окружность ]
[ Вписанные четырехугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

На сторонах AB, BC, CD, DA прямоугольника ABCD взяты соответственно точки K, L, M, N, отличные от вершин. Известно, что   KL || MN  и
KMNL.  Докажите, что точка пересечения отрезков KM и LN лежит на диагонали BD прямоугольника.

Прислать комментарий     Решение

Задача 53631

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Птолемея ]
Сложность: 3+
Классы: 8,9

Гипотенуза прямоугольного треугольника служит стороной квадрата, расположенного вне треугольника.
Найдите расстояние между вершиной прямого угла треугольника и центром квадрата, если катеты треугольника равны a и b.

Прислать комментарий     Решение

Задача 53706

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Отношение площадей подобных треугольников ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Точка M, лежащая вне круга с диаметром AB, соединена с точками A и B. Отрезки MA и MB пересекают окружность в точках C и D соответственно. Площадь круга, вписанного в треугольник AMB, в четыре раза больше, чем площадь круга, вписанного в треугольник CMD. Найдите углы треугольника AMB, если известно, что один из них в два раза больше другого.

Прислать комментарий     Решение

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 496]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .