ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 496]      



Задача 64797

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Подобные треугольники (прочее) ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9,10

Пусть AHa и BHb – высоты, а ALa и BLb – биссектрисы треугольника ABC. Известно, что  HaHb || LaLb.  Верно ли, что  AC = BC?
Прислать комментарий     Решение


Задача 64835

Темы:   [ Пятиугольники ]
[ Вписанные и описанные многоугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9,10

На доске был изображен пятиугольник, вписанный в окружность. Маша измерила его углы и у нее получилось, что они равны 80°, 90°, 100°, 130° и 140° (именно в таком порядке). Не ошиблась ли Маша?

Прислать комментарий     Решение

Задача 65648

Темы:   [ Правильные многоугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные четырехугольники (прочее) ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Теорема Паскаля ]
Сложность: 3+
Классы: 9,10,11

Автор: Нилов Ф.

Дан правильный семиугольник A1A2A3A4A5A6A7. Прямые A2A3 и A5A6 пересекаются в точке X, а прямые A3A5 и A1A6 – в точке Y.
Докажите, что прямые A1A2 и XY параллельны.

Прислать комментарий     Решение

Задача 66231

Темы:   [ Признаки и свойства параллелограмма ]
[ Свойства биссектрис, конкуррентность ]
[ Вписанные четырехугольники (прочее) ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 3+
Классы: 8,9

В параллелограмме ABCD провели трисектрисы углов A и B. Трисектрисы, ближние к стороне AB, пересекаются в точке O. Обозначим пересечение трисектрисы AO со второй трисектрисой угла B через A1, а пересечение трисектрисы BO со второй трисектрисой угла A через B1. Пусть M – середина отрезка A1B1, а прямая MO пересекает сторону AB в точке N. Докажите, что треугольник A1B1N – равносторонний.

Прислать комментарий     Решение

Задача 108045

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Гомотетия: построения и геометрические места точек ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Автор: Табов Й.

Для каждой точки C полуокружности с диаметром AB (C отлична от A и B) на сторонах AC и BC треугольника ABC построены вне треугольника квадраты. Найдите геометрическое место середин отрезков, соединяющих их центры.

Прислать комментарий     Решение

Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 496]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .