ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружность S2 проходит через центр O окружности S1 и пересекает её в точках A и B. Через точку A проведена касательная к окружности S2. Точка D – вторая точка пересечения этой касательной с окружностью S1. Докажите, что  AD = AB.

   Решение

Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 239]      



Задача 115737

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
Сложность: 4
Классы: 8,9,11

Вокруг выпуклого четырёхугольника ABCD описаны три прямоугольника. Известно, что два из этих прямоугольников являются квадратами. Верно ли, что и третий обязательно является квадратом? (Прямоугольник описан около четырёхугольника ABCD, если на каждой стороне прямоугольника лежит по одной вершине четырёхугольника.)

Прислать комментарий     Решение

Задача 53366

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вспомогательные равные треугольники ]
Сложность: 4+
Классы: 8,9

Автор: Купцов Л.

На сторонах AB и BC треугольника ABC как на гипотенузах построены вне его прямоугольные треугольники APB и BQC с одинаковыми углами величины φ при их общей вершине B. Найдите углы треугольника PQK, где K – середина стороны AC.

Прислать комментарий     Решение

Задача 111668

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
[ Признаки и свойства параллелограмма ]
Сложность: 5
Классы: 8,9

На сторонах треугольника ABC внешним образом построены правильные треугольники.
Докажите, что их центры образуют правильный треугольник, причём его центр совпадает с точкой пересечения медиан треугольника ABC.

Прислать комментарий     Решение

Задача 52488

Темы:   [ Угол между касательной и хордой ]
[ Взаимное расположение двух окружностей ]
[ Вспомогательные равные треугольники ]
Сложность: 3-
Классы: 8,9

Окружность S2 проходит через центр O окружности S1 и пересекает её в точках A и B. Через точку A проведена касательная к окружности S2. Точка D – вторая точка пересечения этой касательной с окружностью S1. Докажите, что  AD = AB.

Прислать комментарий     Решение

Задача 53641

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
[ Вспомогательные равные треугольники ]
Сложность: 3
Классы: 8,9

Пусть AE и CD – биссектрисы равнобедренного треугольника ABC  (AB = BC).  Докажите, что  ∠BED = 2∠AED.

Прислать комментарий     Решение

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .