ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Четырехугольники
>>
Трапеции
>>
Проекции оснований, сторон или вершин трапеции
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Из точки вне окружности проведены касательные и секущая, причём точки касания и точки пересечения секущей с окружностью являются вершинами некоторой трапеции. Найдите отношение оснований трапеции, если известно, что угол между касательными равен 60o. Решение |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 52]
Окружность вписана в равнобедренную трапецию ABCD с основаниями BC = a и AD = b. Точка H – проекция вершины B на AD, точка P – проекция точки H на AB, точка F лежит на отрезке BH, причём FH = AH. Найдите AB, BH, BP, DF и расположите найденные величины по возрастанию.
Трапеция с высотой h вписана в окружность. Боковая сторона трапеции видна из центра окружности под углом 120o. Найдите среднюю линию трапеции.
В окружность с центром O вписана трапеция ABCD (BC || AD). В этой же окружности проведены диаметр CE и хорда BE, пересекающая AD в точке F. Точка H – основание перпендикуляра, опущенного из точки F на CE, S – середина отрезка EO, M – середина BD. Известно, что радиус окружности равен R, а CH = 9R/8. Найдите SM.
В окружности с центром O проведены параллельные хорды PQ и RS, диаметр SE и хорда RE. Хорда RE пересекает хорду PQ в точке F, из точки F опущен перпендикуляр FH на SE. Известно, что радиус окружности равен r, а EH = 3r/8. Найдите расстояние от середины отрезка EO до середины хорды RQ.
Из точки вне окружности проведены касательные и секущая, причём точки касания и точки пересечения секущей с окружностью являются вершинами некоторой трапеции. Найдите отношение оснований трапеции, если известно, что угол между касательными равен 60o.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 52] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|