ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На рисунке изображен график приведённого квадратного трёхчлена (ось ординат стёрлась, расстояние между соседними отмеченными точками
равно 1). Чему равен дискриминант этого трёхчлена?

Вниз   Решение


Из точки, данной на окружности, проведены диаметр и хорда, равная радиусу. Найдите угол между ними.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 291]      



Задача 53455

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 2
Классы: 8,9

Докажите, что биссектрисы равностороннего треугольника делятся точкой пересечения в отношении  2 : 1,  считая от вершины треугольника.

Прислать комментарий     Решение

Задача 56859

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 2
Классы: 8

Окружность делит каждую из сторон треугольника на три равные части. Докажите, что этот треугольник правильный.
Прислать комментарий     Решение


Задача 52527

Темы:   [ Правильный (равносторонний) треугольник ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 2+
Классы: 8,9

Из точки, данной на окружности, проведены диаметр и хорда, равная радиусу. Найдите угол между ними.

Прислать комментарий     Решение

Задача 52528

Темы:   [ Правильный (равносторонний) треугольник ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 2+
Классы: 8,9

Из точки, данной на окружности, проведены две хорды, каждая из которых равна радиусу. Найдите угол между ними.

Прислать комментарий     Решение

Задача 53918

Темы:   [ Правильный (равносторонний) треугольник ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Угол между радиусами OA и OB окружности равен 60°. Найдите хорду AB, если радиус окружности равен R.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 291]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .